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Abstract 

Model compounds of intermediates and transition states involved in the Pt-catalyzed disilylation of alkene were optimized with the 
energy gradient method and the energy changes along this catalytic reaction were calculated with the ab initio MO/MP4SDQ method. 
The rate-determining step is the ethylene insertion into the Pt(II)-SiH 3 bond, of which the activation energy was evaluated to be much 
too high (45 kcal mol- 1). This high activation energy arises from the strong trans-influence of the silyl group. This result clearly indicates 
that the disilylation can take place for the substrate that is easily inserted into the metal-silyl bond. © 1997 Elsevier Science S.A. 

Platinum and palladium-catalyzed disilylations of 
alkene [1-3], alkyne [4,5], diene [6], and similar com- 
pounds [7] have received considerable attention because 
two silyl groups can be introduced into an organic 
molecule at a time. In the reaction mechanism proposed 
for the disilylation of alkene and alkyne [2,3,5], the 
oxidative addition of disilane occurs first, affording the 
transition metal disilyl complex, then alkene or alkyne 
is inserted into the metal-silyl bond, and finally the 
Si-C reductive elimination takes place to yield a disily- 
lated product. Although intermediates involved have not 
been experimentally detected in the catalytic reactions, 
such elementary processes as the oxidative addition of 
disilane to Pt(0) [8], the reductive elimination of 
Pt(CH3)(SiH3)(PR3) 2 [9], and the alkyne insertion into 
the metal-silyl bond [10] have been ascertained experi- 
mentally to occur. However, there remain many impor- 
tant issues to be examined: for instance, (1) which is the 
rate-determining step? (2) how much is the activation 
energy? and (3) how is the transition state character- 
ized? Proper answers to these issues are necessary to 
make further developments in this field. 

In the present work, platinum-catalyzed disilylation 
of ethylene is theoretically investigated with the ab 
initio MO method, to provide theoretical answers to the 
above-mentioned issues. It is also our intention with this 
work to put forward the theoretical calculation of a full 
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catalytic cycle, since theoretical calculations on full 
catalytic cycles are still sparse [11,12]. 

Geometries were optimized with the ab initio HF 
energy gradient method in the ethylene insertion [13] 
using the effective core potentials (ECPs) for core elec- 
trons (up to 4f) of Pt [14], a (4s 4p 3d)/[3s 3p 2d] set 
for valence electrons of Pt [14], MIDI-3* and MIDI-3 
basis sets for Si and C [15] respectively, a (4s)/[2s] set 
[16] for H (except for H of PH3), and MINI-1 basis set 
for PH 3 [15], where superscript * indicates that the 
d-polarization function was involved. As ascertained in 
our previous work [12], the E a value calculated for the 
SCF geometry would be almost the same as that calcu- 
lated for the MP2 geometry in the ethylene insertion 
into P * - H .  In the oxidative addition and the reductive 
elimination, geometries were optimized with the ab 
initio MP2 energy gradient method, because introduc- 
tion of electron correlation somewhat shifts the transi- 
tion state to the reactant side in these reactions [17]. 
Even in the oxidative addition reaction in which intro- 
duction of electron correlation somewhat changes the 
TS geometry, the E a value calculated for the MP2 
geometry is almost the same as that calculated for the 
SCF geometry [16]. In MP2 optimization, a (4s 4p 
3d)/[3s 3p 3d] set was used for Pt [14] with the same 
ECPs as above, and MIDI-4*, MIDI-4, and (4s)/[2s] 
basis sets were employed for Si [15], C [15], and H [16] 
atoms respectively. Energy changes were evaluated at 
the MP4SDQ level, where (4s 4p 3d)/[3s 3p 3d] [14], 
(12s 8p ld)/[6s 4p ld] [16], MIDI-4* [15], (9s 5p 
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l d ) / (3 s  2p ld) [16], and (4s)/[2s] [16] sets were used 
for Pt, Si, P, C, and H atoms respectively. The Gaussian 
92 program [18] was used for all these calculations. 

The first step of the catalytic cycle is the oxidative 
addition of S i 2 H  6 to  P t ( P H 3 )  ~. As shown in Fig. 1, this 
step was theoretically calculated to proceed with an 
activation energy E a of ca. 16kcalmo1-1 and exother- 
micity E~x o of ca. 33kca lmol  -] ,  affording cis- 
Pt(SiH3)~(PH3) 2 [17]. The next step is the ethylene 
insertion into one of  the P t -S iH 3 bonds. According to 
Hoffmann and coworker [19], the ethylene insertion into 
the metal-alkyl and metal-hydride bonds can take place 
easily via a four-coordinate intermediate such as 
MLX(R)(C~H4), where M is a d 8 metal and R is a 
hydride or an alkyl ligand. Actually, it was experimen- 
tally proposed [20] that ethylene substitutes one of the 
phosphine sites in PdPhCl(dippb) (dippb = 1,4-bis-(di- 
isopropylphosphino)butane), followed by ethylene inser- 
tion into the P t -Ph  bond. Thus, we examined the 
ethylene insertion in the four-coordinate complex 

Pt(SiH3)~(PH3)(CaH4). This insertion requires a signif- 
icantly high E a value of 45 kcal tool-  ], affording the 
product (PRO1). The transition state (TS) structure 
(Fig. 1) exhibits several interesting features as follows. 
(1) Ethylene moves toward Sill3, and at the same time 
Sill 3 changes its direction toward C ~. (2) The S i -C  ~ 
distance is about 10% longer than it is in the product. 
(3) The P t -C  ~ distance is almost the same as that in the 
product, indicating that the Pt-alkyl bond is already 
formed at the TS, preceding the formation of the S i -C  a 
bond. [It seems strange that the P t - C "  distance is a 
little bit shorter than those of PRO3  and PRO4.  One 
possible reason is that the P t -C  ~ bond of P R O 3  is a 
little bit weaker than that in the TS because of the 
agostic interaction between Pt and H atoms (remember 
that the Pt atom is three-coordinate at the TS because 
the Pt-SiH3 bond has almost broken). However, this 
discussion does not lead to a completely clear reason. 
At the moment, we have not found the clear reason.] 
These features were also observed in the ethylene inser- 
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Fig. 1. Energy changes and some optimized geometries in the Pt(PH3)2-catalyzed bis-silation of  ethylene; MP4SDQ calculation. 
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tion into Cu-H, C u - C H  3 [21], and Pt -H bonds [12]. 
These features indicate that ethylene should be activated 
by the unsymmetrical coordination to Pt to undergo the 
insertion into the metal-R bond (R = H, alkyl, etc.), as 
previously proposed for the nucleophilic attack on the 
olefin coordinating to metal [22]. The high E, value is 
easily understood by considering the TS structure as 
follows: in the TS, the Pt-alkyl bond is already formed 
at the trans position to Sill 3, which causes significant 
energy destabilization because of strong trans-influence 
of alkyl and silyl groups. 

In PRO1 which is formed just after the insertion, a 
strong agostic interaction is formed between the Si -H 
bond and the Pt atom, as clearly shown by the short 
P t -H distance of 1.712~, and the long Si-H bond of 

o 

1.60 A. Although this product is stabilized by the agos- 
tic interaction, this is not the most stable because the 
Pt-alkyl bond is at the trans-position to the Pt-SiH 3 
bond. In the most stable product (PRO4), the trans- 
position to the most strong Pt-SiH 3 bond is vacant, and 
the next strongest Pt-alkyl bond is at the trans-position 
to the least strong P t - P H  3 bond. The isomerization 
from PRO1 to PRO4 would occur after the breaking of 
the agostic interaction which causes the energy destabi- 
lization of ca. 22 kcal mol- 1 (compare PRO1 with 
PRO2 in Fig. 1). The isomerization of PRO2 would 
occur very easily with no barrier, as investigated previ- 
ously [12]. The final step is the Si-C reductive elimina- 
tion to yield the bis-silylated product. This reductive 
elimination was examined on a model complex, 
Pt(PH3)2(SiH3)(CH3). Its E a value was calculated to 
be ca. 36 kcal mo1-1. The reaction energy of the whole 
catalytic cycle was estimated to be about 33 kcal mol- 
at the MP4SDQ level, considering the following reac- 
tion (Eq. (1)): 

S i H 3 - S i H  3 + C2H 4 ~ S iH3CH2CH2SiH 3 (1) 

The reaction energy given in Fig. 1 (about 
40kcalmo1-1) is not very much different from the 
reaction energy of Eq. (1). Thus, it is not so bad to 
adopt Pt (SiH3)(CH3)(PH3)  2 as a model of  
Pt(CH2CH2SiH3)(CH3)(PH3) 2. The difference would 
be attributed to the presence of two silyl groups in 
SiH3CH2CH2SiH 3 which would destabilize the prod- 
uct. Actually, the SiH3-CH2CH2SiH 3 bond energy is 
smaller than that of SiH3-CH 3 by ca. 5kcalmo1-1 at 
the MP4SDQ level. A detailed theoretical investigation 
of the [3-silyl effects is in progress now in our group. 

In summary, the N-catalyzed disilylation of ethylene 
requires the significantly high E a value at the ethylene 
insertion which is the rate-determining step. From this 
result, one should make an effort to lower the activation 
barrier of the insertion step by using the substrate that 
easily undergoes the insertion reaction. 
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